Introduction to Computational Modeling of Lexical and Grammatical Knowledge Acquisition using Machine Learning Techniques

December 2004

Damir Ćavar
Indiana University
Agenda

• General Comments
• Probability Theory
• N-Gram Models
 – Frequency, Entropy
• Minimum Description Length Principle
• Vector Space Modeling
• Clustering Algorithms
• Simple Experiments
Lexical Induction

• Model acquisition of lexical properties
 – If syntactic properties are, or can be described as lexical properties, this also implies modeling of syntactic properties.
 – Cue-based model, where cues are extrinsic and intrinsic properties.
 – Goal: categorization in morpho-syntactic, as well as in semantic or conceptual types.
Lexical Induction

• Why?
 – The lexicon is the key to language properties.
 – Resolve the paradox: The lexicon is dynamic, language properties are static.
 – Solve some aspects of the Bootstrapping-paradox in language acquisition.
 – Provide some insights and algorithms for lexical acquisition that might have practical relevance for existing computational linguistic problems.
Modeling Language Acquisition

• The phenomenon refers to:
 – Mapping of non-discrete acoustic events on symbolic representations or activation patterns in a neural net.
 – Segmentation of the symbolic representation, or non-discrete event.
 – Grouping of segments for immediate typing.
 – Grouping of segments for higher level typing.
 – Discovery of relational dependencies for rule induction.
Lexical Induction

• Instruments
 – Word-, and morphological segmentation
 – Frequency-based methods
 – Minimum Description Length Principle
 – Vector Space Modeling
 – Clustering Analysis
 – Classification
Introduction

Probability Theory

• Plausibility:
 – policeman, night, burglary alarm, jewelry shop, man with mask and bag full of jewels

• Logic deduction based on events vs. Plausibility

• Majority of everyday decisions:
 – Based on incomplete information for deductive reasoning
Probability Theory

• Plausibility:
 – although we are familiar with plausible conclusions
 – formation of plausible conclusions is a subtle process
 – There is no formal model of this process that is satisfying to everybody working in this domain
Probability Theory

• Contrast between deductive and plausible reasoning:
 – Syllogisms:
 • If A is true, then B is true

 A is true

 therefore, B is true

 – inverse:
 • If A is true, then B is true

 B is false

 therefore, A is false

© 2004 by Damir Čavari, Indiana University
Probability Theory

• Deductive reasoning along the lines of these syllogisms would be desirable.
• In most situations we do not have the right kind of information for this reasoning:
 – Fallback: weaker syllogisms:
 • If A is true, then B is true

 \[\text{B is true} \]

 therefore, A becomes more plausible
Probability Theory

• “Weak” syllogism:
 – The evidence of B being true does not prove that A is true, however
 – verification of one of its consequences does give us more confidence in A.

• Weather-example

• Observing B does not give us logical certainty that A, but it may induce us to change behavior, plans, as if we believed it does.
Probability Theory

• Another weak syllogism:
 – If A is true, then B is true

\[\begin{array}{c}
A \text{ is false} \\
\hline
\text{therefore, B becomes less plausible}
\end{array} \]

– There is no prove that B is false, but one plausible reason for its being true is eliminated, thus
– we feel less *confident* about B.

• Scientific reasoning consists usually of the two weak syllogisms.
Probability Theory

• Another weak syllogism, the policeman reasoning:
 – If A is true, then B becomes more plausible

 B is true

 therefore, A becomes more plausible

 – The argument of the policeman is weak.
 – Nevertheless, it has a very strong convincing power,
 almost the power of deductive reasoning.
Probability Theory

• Cognitive perspective:
 – The brain decides whether something is more or less *plausible*.
 – It evaluates the *degree of plausibility* in some way.
 – It makes use of *old information*.
 – It makes use of the *specific new data* of the problem.

• Reasoning:
 – We depend on *prior information* to help us evaluating the degree of plausibility in a new problem.
 – This is an unconscious process, quite complicated. (we call it *common sense*)
Probability Theory

Probability theory is nothing but common sense reduced to calculation.

Laplace, 1819
Probability Theory

• Prerequisite: Boolean Algebra
• Representation of degree of plausibility by real numbers.
• Qualitative correspondence with common sense.
• Consistency.
Probability Theory

• The chance of a particular outcome occurring is determined by the ratio of the number of favorable outcomes to the total number of outcomes.

\[P(A) = \frac{\text{number of favorable outcomes}}{\text{total number of possible outcomes}} \]

• Approach: frequency based
Probability Theory

• Examples:
 – well-shuffled deck of cards:
 • number of cards 52
 – What is the probability of drawing an ace?
Probability Theory

• Deck of cards:
 – 4 aces
 – 52 number of cards

\[P(\text{randomly drawing an ace}) = \frac{4}{52} = 0.077 \]

• Probability expressed as decimal range between 0 and 1
 – 0 = no chance
 – 1 = certainty
Probability Theory

• Uniform Distribution:
 – Every outcome has equal likelihood.

• Disjoint outcomes:
 – Outcomes may not occur at the same time. (mutually exclusive outcomes)
 • The outcome of drawing just one card can not be an ace and a 9.
Relative Frequency Theory

• If an experiment is repeated an extremely large number of times and a particular outcome occurs a percentage of the time, then the particular percentage is close to the probability of that outcome.
Simple Events

• Simultaneously tossing coins:
 – a penny
 – a nickel
 – a dime

• Mutually exclusive events:
 – Head or tail, not both.

• What is the probability of three heads?
Simple Events

- Total outcomes:

<table>
<thead>
<tr>
<th>outcome</th>
<th>penny</th>
<th>nickel</th>
<th>dime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>T</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Simple Events

- Total outcomes: 8
- Favorable outcomes: 1

\[P(3H) = \frac{1}{8} = 0.125 \]

- What is the probability of at least two coins landing head?
Simple Events

• Total outcomes: 8
• Favorable outcomes: 4

\[P(\text{min 2H}) = \frac{4}{8} = 0.5 \]

• What is the probability of exactly one coin landing head?
Simple Events

• Total outcomes: 8
• Favorable outcomes: 3

\[P(1H) = \frac{3}{8} = 0.375 \]
Simple Events

• Independent Events
 – Outcomes that are not affected by other outcomes.

• Dependent Events
 – Outcomes that are affected by other outcomes.

• Dependent Events: Example
 – Randomly drawing an ace from one deck of cards.
 – Randomly drawing another ace from the same deck of cards without returning the first.
Dependent Events

• 1st draw:
 \[P(A) = \frac{4}{52} = 0.0769 \]

• 2nd draw:
 \begin{itemize}
 \item Possibility 1: 1st card is not an ace
 \begin{itemize}
 \item Total number of outcomes: 51
 \item Favorable outcomes: 4
 \item \[P(A) = \frac{4}{51} = 0.0784 \]
 \end{itemize}
 \item Possibility 2: 1st card is an ace
 \begin{itemize}
 \item Total number of outcomes: 51
 \item Favorable outcomes: 3
 \item \[P(A) = \frac{3}{51} = 0.0588 \]
 \end{itemize}
 \end{itemize}
Independent Events

• 1st draw:
 - \(P(A) = \frac{4}{52} = 0.0769 \)
 - Return card to deck.

• 2nd draw:
 - Possibility 1: 1st card is not an ace
 • Total number of outcomes: 52
 • Favorable outcomes: 4
 • \(P(A) = \frac{4}{52} = 0.0769 \)
 - Possibility 2: 1st card is an ace
 • Total number of outcomes: 52
 • Favorable outcomes: 4
 • \(P(A) = \frac{4}{52} = 0.0769 \)
Joint Occurrences

• Tossing three coins as a sequence of events:
 – 1st penny
 – 2nd nickel
 – 3rd dime

• Probabilities for Head:
 – penny: ½, nickel: ½, dime: ½

• Multiplication rule:
 – The probability of two or more independent events all occurring is the product of their probabilities.
Joint Occurrences

• Multiplication of probabilities for head:
 – penny: $\frac{1}{2}$, nickel: $\frac{1}{2}$, dime: $\frac{1}{2}$
 – $0.5 \times 0.5 \times 0.5 = 0.125$
 – Compare with classical approach!

• Notation:

\[P(AB) = P(A) \times P(B) \]
Joint Occurrences

- Drawing two aces from one deck of cards without returning the first:

\[P(AB) = \frac{4}{52} \times \frac{3}{51} = \frac{12}{2652} = 0.0045 \]

- Drawing two aces from one deck of cards returning the first:

\[P(AB) = \frac{4}{52} \times \frac{4}{52} = \frac{16}{2704} = 0.0059 \]
Mutually Exclusive Events

• Tossing one coin once:

 – What is the probability of at least one outcome head or one outcome tail?
Mutually Exclusive Events

• Tossing one coin once:
 – The probability of at least one outcome head or one outcome tail is: 1

• Reason:
 – \(P(Head) = 0.5 \)
 – \(P(Tail) = 0.5 \)
 – \(P(Head \ or \ Tail) = 0.5 + 0.5 = 1 \)

• What is the probability of drawing a king or an ace?
Mutually Exclusive Events

• The probability of drawing a king or an ace:
 – king: \(\frac{4}{52} \)
 – ace: \(\frac{4}{52} \)
 \[P(\text{king or ace}) = \frac{4}{52} + \frac{4}{52} = \frac{8}{52} = 0.154 \]

• Addition rule
 – Only with mutually exclusive outcomes the probability of one outcome or another outcome is the sum of the probabilities of single outcomes.
Non-Mutually Exclusive Events

• What is the probability of the outcome of at least one head with one coin tossed twice?
 – head1: 1/2
 – head2: 1/2
 \[P(\text{min1H}) = \frac{1}{2} + \frac{1}{2} = 1 \]

• No!
• No addition rule with non-mutually exclusive events!
Non-Mutually Exclusive Events

• The probability of the outcome of at least one head with one coin tossed twice:
 – Notation: At least one favorable outcome in two events
 \[P(A + B) = P(A) + P(B) - P(AB) \]
• Read as: probability of A plus the probability of B, minus the joint probability of an occurrence of A and B.
• Why?
Non-Mutually Exclusive Events

- Total outcomes:

<table>
<thead>
<tr>
<th>outcome</th>
<th>coin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
</tr>
</tbody>
</table>

- Favorable outcomes: 3
- Addition rule: adds two favorable outcomes from the first toss, and two favorable outcomes from the second toss!
Conditional Probability

• Data:

<table>
<thead>
<tr>
<th></th>
<th>Students</th>
<th>Younger than 25</th>
<th>25 or older</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
<td>35</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

• What is the probability that a student selected at random will be male?
Conditional Probability

• The probability that a student selected at random will be male:
 \[P(\text{male}) = \frac{40}{100} = 0.4 \]

• What is the probability that a person younger than 25 selected at random will be male?
Conditional Probability

- The probability that a person younger than 25 selected at random will be male:
 - A = being male
 - B = being younger than 25
 - A is conditional upon B
 - 5 of 25 are male and younger than 25

\[P(A | B) = \frac{AB}{B} = \frac{P(AB)}{P(B)} \]

- Note: Reverse set via P(B|A)!
Conditional Probability

- The probability that a person younger than 25 selected at random will be male:
 - $A =$ being male
 - $B =$ being younger than 25
 - A is conditional upon B
 - 20 of 25 are male and younger than 25

$P(A|B) = \frac{P(A \cap B)}{P(B)}$
Conditional Probability

- Conditional probability = posterior probability
 - \(P(a|b) \), given \(a \) and \(b \) as any propositions
 - “the probability of \(a \), given that \(b \) occurred”
 - “the probability of \(a \), given that all we know is \(b \)”
Conditional Probability

Definition:

- Conditional probabilities in terms of unconditional probabilities.

\[P(A|B) = \frac{P(A \cap B)}{P(B)} \]

- whenever \(P(b) > 0 \)
Conditional Probability

- **Definition as the Product Rule:**
 - Conditional probabilities in terms of unconditional probabilities.

\[
P(A \cap B) = P(A|B)P(B)
\]

- or . . .
Conditional Probability

- **Definition as the Product Rule:**
 - Conditional probabilities in terms of unconditional probabilities.

\[
P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)
\]

- Why?
Conditional Probability

- **Product Rule:**

\[P(A \cap B) = P(B|A)P(A) = P(A|B)P(B) \]

- For \(A \) and \(B \) to be true, we need \(B \) to be true, and we also need \(A \) to be true given \(B \).
- **Commutativity of conjunction!**
- Set intersection is symmetric: \(A \cap B = B \cap A \)
Conditional Probability
Conditional Probability

- Equating the two right-hand sides of the product rule:

\[
P(B|A)P(A) = P(A|B)P(B)
\]

\[
\frac{P(B|A)P(A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}
\]

\[
P(B|A) = \frac{P(A|B)P(B)}{P(A)}
\]
Bayes’ Theorem

\[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \]

- Bayes’ theorem, Bayes’ law, Bayes’ rule
 - Underlies modern AI systems for probabilistic inference.
 - What is it good for?
Bayes’ Theorem

• **Properties:**
 – Requires three terms (1 conditional & 2 unconditional probabilities) to calculate one conditional probability.

• **Use:**
 – When we have good probability estimates for these three numbers we can compute the fourth.
Bayes’ Theorem

• Example:
 – 2% of a population has a disease
 – A disease test says that 3.2% of the population has this disease.
 – Chance for testing a person with this disease positive is 75%.
 – What is the probability that a person who is tested positive really has the disease?
Bayes’ Theorem

• Example:

- $D+/D-$ is the event of having/not having the disease
- $T+/T-$ is the event of a positive/negative test
- $P(D+) = 0.02$
- $P(T+) = 0.032$
- $P(T+|D+) = 0.75$

• What is $P(D+|T+)$?
Bayes’ Theorem

<table>
<thead>
<tr>
<th></th>
<th>$D+$</th>
<th>$D-$</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T+$</td>
<td></td>
<td></td>
<td>0.032</td>
</tr>
<tr>
<td>$T-$</td>
<td></td>
<td></td>
<td>0.968</td>
</tr>
<tr>
<td>total</td>
<td>0.02</td>
<td>0.98</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Bayes’ Theorem

\[
P(D + | T+) = \frac{P(T + | D+)P(D+)}{P(T+)}
\]

<table>
<thead>
<tr>
<th></th>
<th>(D+)</th>
<th>(D-)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T+)</td>
<td></td>
<td></td>
<td>0.032</td>
</tr>
<tr>
<td>(T-)</td>
<td></td>
<td></td>
<td>0.968</td>
</tr>
<tr>
<td>total</td>
<td>0.02</td>
<td>0.98</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Bayes’ Theorem

\[
P(D + | T+) = \frac{P(T + | D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875
\]

<table>
<thead>
<tr>
<th></th>
<th>(D+)</th>
<th>(D-)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T+)</td>
<td></td>
<td></td>
<td>0.032</td>
</tr>
<tr>
<td>(T-)</td>
<td></td>
<td></td>
<td>0.968</td>
</tr>
<tr>
<td>total</td>
<td>0.02</td>
<td>0.98</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Bayes’ Theorem

<table>
<thead>
<tr>
<th></th>
<th>$D+$</th>
<th>$D-$</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T+$</td>
<td>0.015</td>
<td></td>
<td>0.032</td>
</tr>
<tr>
<td>$T-$</td>
<td></td>
<td></td>
<td>0.968</td>
</tr>
<tr>
<td>total</td>
<td>0.02</td>
<td>0.98</td>
<td>1.000</td>
</tr>
</tbody>
</table>

$$P(D+ | T+) = \frac{P(T+ | D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875$$
Bayes’ Theorem

\[
P(D+ | T+) = \frac{P(T+ | D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875
\]

<table>
<thead>
<tr>
<th></th>
<th>(D+)</th>
<th>(D−)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T+)</td>
<td>0.015</td>
<td>0.017</td>
<td>0.032</td>
</tr>
<tr>
<td>(T−)</td>
<td></td>
<td></td>
<td>0.968</td>
</tr>
<tr>
<td>total</td>
<td>0.02</td>
<td>0.98</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Bayes’ Theorem

\[
P(D + | T+) = \frac{P(T + | D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875
\]

<table>
<thead>
<tr>
<th></th>
<th>(D+)</th>
<th>(D−)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T+)</td>
<td>0.015</td>
<td>0.017</td>
<td>0.032</td>
</tr>
<tr>
<td>(T−)</td>
<td>0.005</td>
<td></td>
<td>0.968</td>
</tr>
<tr>
<td>total</td>
<td>0.02</td>
<td>0.98</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Bayes’ Theorem

\[
P(D + | T+) = \frac{P(T + | D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875
\]

<table>
<thead>
<tr>
<th></th>
<th>(D^+)</th>
<th>(D^-)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T^+)</td>
<td>0.015</td>
<td>0.017</td>
<td>0.032</td>
</tr>
<tr>
<td>(T^-)</td>
<td>0.005</td>
<td>0.963</td>
<td>0.968</td>
</tr>
<tr>
<td>total</td>
<td>0.02</td>
<td>0.98</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Probability Distributions

• Pictorial Display of the probability $P(x)$ for any value of x.

• Two tossed coins:

<table>
<thead>
<tr>
<th>outcome</th>
<th>Coins</th>
<th>Num heads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Probability Distributions

• Pictorial Display of the probability $P(x)$ for any value of x.
• Two tossed coins:

<table>
<thead>
<tr>
<th>x</th>
<th>$P(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{4}$</td>
</tr>
</tbody>
</table>

![Histogram of coin tosses](image)
Probability Distributions

• Use of probability to describe events includes the notion of uncertainty. This can be described with a probability distribution:

- fair coin:

 \[
 \begin{array}{c|c|c}
 x & P(\text{head}) & P(\text{tail}) \\
 \hline
 0 & \frac{1}{2} & \frac{1}{2}
 \end{array}
 \]

- biased coin:

 \[
 \begin{array}{c|c|c}
 x & P(\text{head}) & P(\text{tail}) \\
 \hline
 0 & \frac{3}{4} & \frac{1}{4}
 \end{array}
 \]
Gaussian Normal Distribution

\[y = \frac{1}{s\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - m}{s} \right)^2} \]

\[e^{-0.5} = 0.6065... \]
Uncertainty

• The probability distributions will differ, some coins are more biased than others.
 – We are more uncertain about the outcome of the fair coin than of the biased.
 – How to quantify this notion of uncertainty?
 • Is there a mathematical method to calculate the uncertainty given a probability distribution?
 – Function:
 • Parameter: a probability distribution for a random variable \(X \)
 – e.g. with \(N \) possible values \(X \) can have,
 – \(X = \{ P(n_1), P(n_2), \ldots P(n_N) \} \)
Uncertainty

• Properties of the uncertainty function, H:
 – It returns real values.
 – It should be maximized for the uniform distribution, i.e. this is equivalent to complete uncertainty.
 • Everything is equal likely to occur.
 – It is continuous, i.e. for arbitrary small changes in the probabilities we expect arbitrary small changes in the real value returned.
 – It does not depend on the order or grouping of events, just on the distribution as such.
Uncertainty

• Maximization requirement:

\[H(P(n_1), P(n_2), P(n_3), \ldots, P(n_N)) \text{ is max when } \forall n : P(n) = \frac{1}{N} \]
Uncertainty

• Independence of Partitioning or Grouping:

\[X = \{P(a) = .5, P(b) = .2, P(c) = .3\} \]

• Outcome of \(b \) or \(c \) occurs 50% of the time:

\[X = \{P(a) = .5, P(Y) = .5\} \]
\[Y = \{P(b) = .4, P(c) = .6\} \]
Uncertainty

- Entropy (average information content):

\[H[X] = k \sum_{x \in X} P(x) \log P(x) \]

- \(\log_2 \) for bits, -1 for positive values, 0 \(\log 0 = 0 \):

\[H[X] = -\sum_{x \in X} P(x) \log_2 P(x) \]

\[H[X] = \sum_{x \in X} P(x) \log_2 \frac{1}{P(x)} \]
N-gram Models

• List all possible symbol combinations of length n for a given corpus,
 – symbols: phones, phonemes, characters, morphemes, words (tokens or types), sentences, paragraphs etc.

• together with their frequencies (absolute + number of all elements/tokens; relative)
Frequency Profiles

• Unigram
• Bi-gram
<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>0.0575</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0.0128</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>0.0263</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>0.0285</td>
</tr>
<tr>
<td>5</td>
<td>e</td>
<td>0.0913</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>0.0173</td>
</tr>
<tr>
<td>7</td>
<td>g</td>
<td>0.0133</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>0.0313</td>
</tr>
<tr>
<td>9</td>
<td>i</td>
<td>0.0599</td>
</tr>
<tr>
<td>10</td>
<td>j</td>
<td>0.0006</td>
</tr>
<tr>
<td>11</td>
<td>k</td>
<td>0.0084</td>
</tr>
<tr>
<td>12</td>
<td>l</td>
<td>0.0335</td>
</tr>
<tr>
<td>13</td>
<td>m</td>
<td>0.0235</td>
</tr>
<tr>
<td>14</td>
<td>n</td>
<td>0.0596</td>
</tr>
<tr>
<td>15</td>
<td>o</td>
<td>0.0689</td>
</tr>
<tr>
<td>16</td>
<td>p</td>
<td>0.0192</td>
</tr>
<tr>
<td>17</td>
<td>q</td>
<td>0.0008</td>
</tr>
<tr>
<td>18</td>
<td>r</td>
<td>0.0508</td>
</tr>
<tr>
<td>19</td>
<td>s</td>
<td>0.0567</td>
</tr>
<tr>
<td>20</td>
<td>t</td>
<td>0.0706</td>
</tr>
<tr>
<td>21</td>
<td>u</td>
<td>0.0334</td>
</tr>
<tr>
<td>22</td>
<td>v</td>
<td>0.0069</td>
</tr>
<tr>
<td>23</td>
<td>w</td>
<td>0.0119</td>
</tr>
<tr>
<td>24</td>
<td>x</td>
<td>0.0073</td>
</tr>
<tr>
<td>25</td>
<td>y</td>
<td>0.0164</td>
</tr>
<tr>
<td>26</td>
<td>z</td>
<td>0.0007</td>
</tr>
<tr>
<td>27</td>
<td>–</td>
<td>0.1928</td>
</tr>
</tbody>
</table>
N-gram Scripts

• Wort n-grams
 – frequency.py
 – frequency2.py
 – frequencyNFW.py
 – ngram.py
 – ngramchar.py
 – unigramchar.py
N-gram Model LID

• Language identification via distributional similarity of n-grams
 – Train language model:
 • extract 3-grams of characters from text for each language, together with the relative frequency of each 3-gram
 – Identify language:
 • extract 3-grams of characters from text
 • compare the standard deviation for each 3-gram with each language model
 • minimum standard deviation identifies the corresponding language
Information Theory

• Mutual Information

\[I(X;Y) = P(XY) \log_2 \frac{P(XY)}{P(X)P(Y)} \]

– How many bits can we spare by storing \(<xy>\) together, rather than each separate?
– How much do we expect \(y\) given \(x\)?
Information Theory

• Relative Entropy

\[D(y||x) = p(y) \log \frac{p(y)}{p(y|x)} \]

– Distance between two distributions:
 • Independent: P(y)
 • Conditional: P(y|x)

– How many bits more would we need to represent \(<xy>\) when we store them together, or when we store them as separate units?